
Journal o f  Statistical Physics, Iiol. 82, Nos. 3/4, 1996 

Ground-State Structure in a Highly Disordered 
Spin-Glass Model 

C. M. N e w m a n  I and D.  L. Stein 2 

Received May 21, 1995;final June 19, 1995 

We propose a new Ising spin-glass model on Z a of Edwards-Anderson type, but 
with highly disordered coupling magnitudes, in which a greedy algorithm for 
producing ground states is exact. We find that the procedure for determining 
(infinite-volume) ground states for this model can be related to invasion per- 
colation with the number  of ground states identified as 2 ~ ,  where ~,l"= At(d) 
is the number of distinct global components in the "invasion forest." We prove 
that ~l,'(d) = oo if the invasion connectivity function is square summable. We 
argue that the critical dimension separating ..I," = 1 and ..V = co is d~ = 8. When 
~l"(d) = oo, we consider free or periodic boundary conditions on cubes of side 
length L and show that frustration leads to chaotic L dependence with all pairs 
of ground states occurring as subsequence limits. We briefly discuss applications 
of our results to random walk problems on rugged landscapes. 

KEY WORDS: Spin glass; ground-state multiplicity; invasion percolation; 
greedy algorithm; minimal spanning tree; frustration; disorder. 

1. INTRODUCTION 

Theoretical work on spin glasses has focused overwhelmingly on the short- 
ranged Edwards-Anderson (EA) model (11) and its infinite-ranged counter- 
part, the Sherrington-Kirkpatrick (SK) model. (29/The EA Hamiltonian is 

~ = -  Z Jx,,ax<r,, (1) 
<xy> 
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where the sum runs only over nearest neighbor pairs of sites on a regular 
d-dimensional lattice. We will confine ourselves in this paper to Ising 
models, i.e., the spins a.,_ take on the values + 1. The couplings J,:,. are i.i.d. 
random variables chosen from a distribution symmetric about zero. One 
standard choice is a mean-zero Gaussian, though one need not be confined 
to that case. 

There are a number of open questions c4~ associated with the EA 
model. These include the question of whether it displays a thermodynamic 
phase transition, and if so, in which dimensions; the nature of its large- 
scale dynamical behavior for standard local spin-flip dynamics; the rela- 
tionship between the behavior ~'f this model and others, such as the SK 
model or long-ranged models; and others. The question we are concerned 
with here is the number of ground-state pairs the model displays in d 
dimensions. (Because of the spin-flip symmetry in the Hamiltonian, ground 
states always come in pairs.) To avoid local degeneracies, we will assume 
that, as in the Gaussian case, the common distribution of the J.,:,,'s is 
continuous. 

Parisi's analysis t-'6) of the SK model displays the striking feature of an 
infinite number of low-temperature phases 127) organized in an ultrametric 
fashion, t2~ A number o.f workers in the field have assumed that a similar 
result applies also to short-ranged spin glasses, and to other models with 
frustration and quenched disorder. 

However, an alternative point of view arose in the mid-1980s following 
a scaling ansatz due to MacMillan,~9~Bray and Moore, 161 and Fisher 
and Huse. t~31 (A different scaling approach was proposed by Bovier and 
Fr6hlich. tSI) The droplet analysis of Fisher and Huse in particular led to 
the opposite conclusion, ~15~'3 namely that the EA model has only a shTgle 
pair of ground states (or of low-temperature pure states) in all finite dimen- 
sions. 

While a spectrum of conjectures has appeared in the literature, two 
opiaosing viewpoints have been prominent over the past decade. Many 
authors who adopt a picture based on Parisi's analysis of the infinite- 
ranged SK model assert that short-ranged spin glasses have an infinite 
number of ground states (in infinite volume) for all "nontrivial" dimensions, 
i.e., d~>2. An opposing viewpoint, proceeding from droplet arguments, 
argues that such spin-glass models possess only a single pair of ground 
states in all finite dimensions. (Both of the above statements are normally 
interpreted to hold for almost every coupling realization.) 

In a recent paper c'--'~, hereafter referred to as I, we invented a model 
(see also ref. 10) simpler than (but related to) the EA spin glass in which 

3 Some of the arguments in these papers and those of ref. 13 were critized by van Enter. ~t6~ 
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we could explore these issues more  fully. The model is analytically trac- 
table, yet complex enough so that  it displays a surprisingly rich ground- 
state behavior.  We will argue that  our  model  undergoes a transition in 
ground-state multiplicity at eight dimensions : below it has a single pair of 
ground states, while above it has infinitely (in fact, uncountably)  many. 4 

We are able to demonstra te  explicitly the mechanism by which multi- 
ple ground-state  pairs arise. This is the first such demonstra t ion of which 
we are aware for a short-ranged spin-glass model  in finite dimension. The 
nature of the mechanism is related to a mapping  of the ground-state 
structure of  our model to invasion percolation. ~8' 8, 31) We will show that 
solving the problem of ground-state  multiplicity in our model requires the 
solution of an interesting prob lem in invasion percolation. 

To  summarize,  we propose and analyze a tractable short-ranged finite- 
dimensional spin-glass model  (although, like the SK model, it is not physi- 
cally realistic). Our  techniques enable us to study the relationship within 
the model among  quenched disorder, frustration, dimensionality, and 
ground-state  multiplicity. We will find in particular that  the role of frustra- 
tion is subtle but significant, and our model is instructive in illustrating the 
larger role frustration may  play in more  realistic spin-glass models. 

The basic features of  our model and its analysis have appeared in I. In 
this paper,  we supply a number  of arguments  omit ted for brevity in I, 
extend our work in several directions, and provide proofs for various con- 
clusions drawn in I. Among  these is a p roof  of  a theorem (see Section 5) 
describing conditions under which certain r andom growth processes avoid 
intersection in d dimensions; as such, its utility extends beyond its 
particular use in this paper. 

The outline of the paper  is as follows : In Section 2 we define our 
model. In Section 3 we provide a simple algori thm for finding the ground- 
state configuration for any volume with a specified boundary  condition and 
discuss some of its properties. In Section 4 we demonstra te  a second algo- 
r i thm for finding the ground state, thereby mapping  our problem onto 
invasion percolat ion and showing how the ground-state multiplicity 
problem in our model is equivalent to the question of nonintersection of 
invasion regions in invasion percolation. In Section 5 we provide a 
heuristic argument  for the dimension dependence of the above questions, 
make  part  of that  a rgument  rigorous by relating it to the square-sum- 
mabili ty of a connectivity function in invasion percolation, and discuss the 

4 It is of interest to note (as pointed out to us by A. van Enter) that several authors (see, for 
example, ref. 32) find that in the standard EA model, certain results of the Parisi picture 
apply, but only above eight dimensions. At this time however, we have no evidence that this 
bears any relation to the transition in ground-state multiplicity at d= 8 in our model. 
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dimensionality of the invasion region as a function of space dimensionality. 
This yields the previously mentioned transition at eight dimensions. In 
Section 6 we discuss the role of frustration, and point out an important 
difference between the nature of multiple ground states in spin glasses 
and that in random ferromagnets. Finally, in Section 7 we summarize our 
results and briefly discuss their application to some dynamical problems of 
random walks on rugged landscapes. 123" 24) 

2. MODEL 

We work on a cubic lattice in d dimensions, i.e., of sites x E Z d and 
edges connecting nearest neighbor sites only. The Hamiltonian is of the 
standard Edwards-Anderson Ising form given in Eq. (1). The difference 
from the usual EA Ising model is in the coupling distribution, which now 
depends on the system size. That is, we apply a nonlinear scaling to the 
couplings which "spreads them out" so much that each coupling magnitude 
exists on its own scale--more precisely, for large enough system size each 
coupling will have at least twice the magnitude of the next smaller coupling. 

We therefore consider a region AL, which is an L d cube centered at 
the origin. We achieve the required condition on the couplings by separat- 
ing their signs and magnitudes in the following manner. Let e,_.~, be a set of 
independent identically distributed (i.i.d.) symmetric +l-valued random 
variables, and let Kxy be a set of i.i.d, continuous random variables (e.g., 
uniform on [0, 1 ]). The e.,-~'s and Kxy'S are defined on a common proba- 
bility space (/2, ~-, P) and are independent of each other. A point co in /2  
may be thought of as a particular realization of all e.,.y'S and K.,:,,'s. Then we 
set 

J x  = . [ (L)  : C L S x y  e --21t-)K.~.~, y v.x'y (2) 

where cL is a linear scaling factor which plays no role in ground-state selec- 
tion and where the nonlinear scaling factor 2 ~t') is chosen to diverge fast 
enough as L ---, oo to ensure that (with probability one) for all large L, each 
j~m - , x.,, im AL is larger than at least twice the next smaller one. 

To see that such a choice of 2 ~z) is possible, note that for any distinct 
pair of edges, the function 

g(2)=p(~<~e-~K~,./e-~J(~',.'<~2) 
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tends to zero as ).--, m because Kxy and gx,y, a r e  independent continuous 
random variables. The probability that our desired condition on the IJ.,.y(t.)ls' 
in At. is not satisfied is bounded by 

~'. ~ g(2 (t-)) = O(L2ag(2(t-))) (4) 
<.x-y > <x'y'> 

where the sums are over edges in At-. If  we choose 2 (t-) so that 
g(,U t-)) = O(L-~Zd+ 1 + ~)) for some e > 0, then the sum of (4) over L is finite, 
so by the Borel-Cantelli lemma it follows that (with probability one) our 
desired condition will be valid for L >/ some finite L*(co). For example, if 
the K v,'S are uniform on [0, I ], then g().) = O(1/2) and so 2 It-) i> L ('-a+ 1 +~) 
is a sufficiently fast divergence. 

It may be helpful to note that the couplings (2) can be expressed in a 
simpler form if we choose each 2 ~t-~ to be an odd integer. Letting ],;~, denote 
the L-independent  coupling e. ,  exp(-K.x-,,), Eq. (2) then becomes 

J!x-,~) =ct-(Y.~,,? 'L' (5) 

Any continuous symmetric distribution for the J . , ' s  (such as Gaussian) is 
possible. 

We will show in the next section that we have constructed a model whose 
ground state for large L can be found with a type of greedy algorithm. While 
this may seem to suggest that interesting ground-state behavior cannot occur, 
we shall see that, surprisingly, this is not the case. We point out here, however, 
that the model has no interesting behavior at nonzero temperature. Its use is 
only as a means of studying ground-state structure. 

3. GREEDY GROUND-STATE ALGORITHM 

We begin with a formal definition of infinite-volume ground states for 
a specific coupling realization w. We first consider the finite volume Az. and 
for the moment assume some fixed boundary condition t~ on OAL, the 
boundary of At.. We define a* to be a ground state on At. (with boundary 
condition #) if it minimizes ~ t . ,  where g t .  is the Hamiltonian of Eq. (1) 
with the summation confined to couplings in At. (including those between 
At. and OAt.). The  set of all infinite-volume ground states given 09 is then 
the set of all subsequence limits as L ~ ~ of tr* with some #t. (i.e., the set 
of all possible limits with all possible boundary conditions). 

For the volume At. with a fixed boundary condition on OAt., we now 
describe an algorithm for finding the ground state a*. (Non-fixed bound- 
ary conditions, such as free and periodic, will be discussed in Section 6.) To 
do this we rank order the couplings in the following manner: the coupling 
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with largest magnitude (corresponding to the smallest value of K,..,.) in AL 
will be said to have rank one; the next larger coupling will have rank two, 
and so on. Now select the coupling with rank one; i.e., that with the 
smallest value of K,:,., and choose the spins t~,. and t~y on its endpoints such 
that tr,.ex,.tr,, > 0, i.e., the coupling is satisfied. Then find the coupling of 
rank two, and choose the spins on its endpoints to satisfy it. Repeat this 
procedure, unless a resulting closed loop (or path connecting two boundary 
sites) with previously satisfied couplings forbids it. When that happens, 
simply proceed to the coupling next in order, and continue until every 
coupling has been tested. 

Note that until a cluster of spins (connected by tested edges) reaches 
the boundary, only the relative orientations of the spins in the cluster are 
known. With a fixed boundary condition, the sign of each spin in a cluster 
will be determined as soon as it connects to the boundary. 

It is not hard to see that this algorithm always provides the ground 
state for any AL in which every coupling magnitude is greater than the sum 
of all those of lower order in AL. This will be the case for all large L (with 
probability one) because each coupling magnitude is greater than at least 
twice that of the next smaller one. To see then that in the ground state a 
given coupling must be satisfied providing this does not violate the pre- 
viously satisfied couplings of higher rank (or the boundary conditions), 
consider the clusters formed by the previously satisfied couplings. Under 
the proviso, the two endpoints of the given coupling must belong to dis- 
tinct clusters, at least one of which does not touch OA L. If the given coupl- 
ing were not satisfied in a spin configuration, then flipping all the spins in 
that cluster (the one not touching OAL) would lower the energy and so the 
spin configuration would not be a ground state. 

The algorithm outlined here is easily recognizable as simply a version 
of the greedy algorithm--in effect, we have invented a spin-glass model 
whose exact ground states can be found via the greedy algorithm (which 
for most models is generally a relatively poor algorithm for finding ground- 
state configurations or energies). It is not at all clear at this point, however, 
that the procedure that we outline, when repeated for ever-increasing 
volumes, will have a natural infinite-volume limit-- but we will show in the 
next section that this is in fact the case. Before we do that, however, we 
explore some of the properties of our model in light of the ground-state 
algorithm just described. 

3.1.  S t a t e m e n t  of  t h e  P r o b l e m  

The question of whether this model has multiple infinite-volume ground- 
state pairs is equivalent to whether, as L ~ oo, a change in boundary conditions 
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can change a fixed coupling deep in the interior from being satisfied to 
unsatisfied, or vice versa. 

We therefore ask whether any bond (.x'lx2) exists with the following 
property: for all large L, before any path of satisfied couplings joining xl 
and .,c 2 within A,  (i.e., not touching OAc) is formed according to the greedy 
algorithm described above, there already exist two disjoint paths, one 
joining Xl to the boundary and the other joining x2 to the boundary. If 
such a bond exists, then whether its coupling is satisfied or unsatisfied will 
be determined by the boundary conditions (for all large L). 

When the boundary of At is sufficiently far from some fixed interior 
region R, it may be that no such coupling exists within R--each coupling 
in R is either itself tested before two such disjoint paths can be found, or 
else its endpoints are first connected via some path (not touching OAL) of 
previously tested couplings. If that is the case for every finite R, then only 
a single pair of spin-flip-related ground states exists in the thermodynamic 
limit. Otherwise, the system possesses multiple pairs of ground states. 

3.2. " A l w a y s  Sat is f ied"  Bonds 

One can distinguish between two kinds of satisfied bonds in our model 
for a given coupling realization co: there is the kind which is satisfied in co 
but which would become unsatisfied in r which is simply r with the sign 
(i.e., the e,..,.) of that particular bond reversed. That is, whether this bond 
is satisfied depends on the specific sign of its corresponding e,.,,. The second 
set of satisfied bonds are those which are satisfied regardless of their sign; 
we will call them S1 bonds (a precise definition is given below). It is easy 
to see, for example, that the coupling of highest rank is S1. In fact, each 
site in AL has at least one S1 bond attached to it, namely that whose rank 
is the highest of all bonds which connect to that site. We note that S1 
bonds appear in the ordinary EA model also (e.g., any bond whose 
magnitude is greater than the sum of the magnitudes of the adjoining 
bonds at either of its ends), but they do not appear to play the crucial role 
that they play in our model. 

Because S1 bonds play an important role in what follows, we will 
devote some space to studying their properties here. In particular, they 
determine the ground-state structure in our model. We begin with a precise 
definition of S1 bonds for a given AL. 

Defini t ion.  A bond will be denoted S1 if the following is true: its 
rank must be greater (i.e., its coupling must be of larger magnitude) than 
at least one coupling in any path (not using that bond) connecting its 
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endpoints. In this definition, we treat all boundary points as automati- 
cally connected so that the union of a path from x to OAt. and a path 
from y to OAt. is considered to connect x and y. We remark that this 
notion of connection within At_ is a consequence of our dealing with a 
fixed boundary condition O; when we treat boundary conditions such as 
free or periodic (in Section 6), the notion of connection will be modified 
accordingly. 

According to the definition, an S1 coupling is chosen to be satisfied by 
the greedy algorithm before any other path of similarly chosen bonds con- 
nects its endpoints. It is apparent that it is the S1 couplings which deter- 
mine the ground-state configuration. Satisfied bonds which are not S1 (call 
them $2) play no role in determining any part of the ground-state spin 
configuration. 

We now present some properties of S1 bonds which will be useful 
later. 

1. The set of all S1 bonds forms a union of trees. This claim is 
obvious from the definition of S1 bonds. 

2. The set of all SI bonds spans the set of all sites in At_, i.e., every 
site belongs to at least one S1 tree; furthermore, every S1 tree touches the 
boundary of AL. 

This second claim comes in two parts: the first has already been shown 
above by explicit construction. The second part is easily shown by con- 
tradiction: suppose a given SI tree "dies" before reaching the boundary of 
At-. Consider all edges which connect a point in this tree to a point not in 
it. The coupling of highest rank within this set must be S1. Therefore, all 
trees formed of S1 couplings reach the boundary. 

It may happen, for a given co, d, and AL, that the SI couplings form 
either a single tree or a union of disjoint trees. Note that this tree partition 
of At. is the same for all boundary conditions #. Within each tree the 
relative sign of the spins is fixed by the S1 couplings; the overall sign for 
each tree is determined by & We can now address the question posed 
earlier--different boundary conditions can give rise to different infinite- 
volume ground states if and only if there exist fixed neighboring sites which 
belong to disjo#u trees of At_ for arbitrary large L's. 

We are left, however, with several important quest ions--How is the 
tree partition for a particular L related to that for some L'  > L ?  More 
specifically, how can one be sure that the procedure we have proposed 
has a natural infinite-volume limit? In order to answer these questions, we 
present an alternative algorithm in the next section, which will provide a 
mapping to invasion percolation. 
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4. I N V A S I O N  P E R C O L A T I O N  A L G O R I T H M  

Before describing our alternative algorithm for obtaining the ground 
states, let us note that although the absolute ranks of the K,:,.'s depend on L, the 
K,:,,'s themselves, and hence their relative ordering by rank, do not change with 
L. This will allow us to analyze the L --* oo limit of our algorithm. 

We begin by defining (in all of Z d) for a given 09 [and hence a fixed 
relative ordering of all the K.,_v(og)'s ] a growing sequence of trees To(u), 
Tl(u), T_(u) ..... starting from u E Z d, with T,,(u) containing 17 edges and 
n +1 sites (including u). To(u) consists of u alone, and in general T,,+ ~(u) 
is obtained from T,,(u) by considering all edges from sites in T,,(u) to new 
sites and adjoining the edge e,,+~(u)= (z , , ,x ,+,)  (and new site x,,+~) 
with the smallest value of K,..,,. This procedure is identical to that employed 
in invasion percolation on Z a (except that we include only edges which 
connect to new sites). 

For a given L and u eAL, let NL(u) denote the smallest n such that 
T,,(u) touches OAL. The crucial point is that when every coupling 
magnitude in AL is greater than the sum of all those of lower order, then 
for any boundary condition ~ on OAL (and any choice of e.,:,,'s), in the 
ground state a*(#), every coupling in T(L)(u) -- TN,un(u) must be satisfied. 
To see this, note that if J:,.,.,,+, were not satisfied [here n +  1 ~<Nt(u)] in 
a given spin configuration, then flipping all the spins in T,,(u) would lower 
the energy because J_. ,.,+~ is the coupling on the boundary of T,,(u) of 
largest magnitude. Then a,* is determined by the tree TtLl(u), the coupling 
signs e.,..,, on that tree, and the boundary condition ~,. at the boundary site 
x touched by that tree. 

It is clear from the preceding discussion (and that of Section 3) that 
every bond in T(L)(u)(for every u) is an S1 bond. Since every T~L~(u) 
touches OAL and the union of all these edges (for all u's in AL) clearly 
touches every site in At., it must be that this union is the same tree parti- 
tion of Az. as obtained in Section 3 from the union of all S1 bonds. On the 
other hand, it is clear from the last paragraph that (for u, veAL) the 
relative sign * ^ * ^ a,,(a) a,,(a) is the same for all choices of ~ if and only if 
TtL~(u) and TILl(v) are nondisjoint. Furthermore, one has the following 
dichotomy concerning the infinite-volume invasion trees, Too(u)= 
limn~ ooT,,(u)='limL_ oo 7~L~(u): If Too(u) and Too(v) are nondisjoint, then 
TtL)(u) and TIL)(v) are nondisjoint for all large L; if Too(u) and Too(v) are 
disjoint, then TtLl(u) and TIL)(v) are disjoint for all L (such that u, v~AL). 
We are thus led to the following conclusions concerning the trees Too(u) 
and their union: 

F~= U Too(u) 
u ~ Z d 
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which we call the invasion forest (note that both the trees and the forest 
depend only on the K,_,,'s and not the e.,.y'S): 

1. In every infinite-volume ground state, every coupling in F~ is 
satisfied. 

2. F~ is either a single (infinite) tree or else a union of JK/> 2 distinct 
(infinite) trees; in either case it spans all of Z d. 

3. The former case happens if for every u, v, the trees To~(u) and 
T~(v) intersect. In this case there is a single infinite-volume ground-state 
pair. 

4. The latter case happens if T~(u) and T~(v) are disjoint for some 
u, v. In this case the number of ground-state pairs is 2""-~ and so is 
uncountable if Y is infinite. 

In the next section we will discuss the dependence of the value of o4r, 
and hence of the ground-state multiplicity, on the spatial dimension d. 

5. N O N I N T E R S E C T I O N  IN I N V A S I O N  P E R C O L A T I O N  

We have mapped the problem of multiplicity of ground states in our 
model to that of whether invasion percolation has nonintersecting invasion 
regions. We can already answer the question of multiplicity of states of our 
model in two dimensions. Because it is known that for d =  2 invasion per- 
colation the trees T~(u) and T~_(v) always intersect (in fact are the same 
modulo finitely many sitesy 9) it follows that our model has only a single 
pair of ground states in two dimensions. Whether any two such trees in 
higher dimensions must intersect is an interesting problem in invasion 
percolation, which we now consider. 

To proceed (mostly nonrigorously), we use a well-known feature of 
invasion percolation: that the invaded region asymptotically approaches 
the so-called incipient infinite cluster (i.e., at the critical percolation prob- 
ability p,.) in the independent bond percolation problem on the same lat- 
tice. ~3~ The fractal dimension D of the incipient cluster in the independent 
bond problem on the d-dimensional cubic lattice is known from both 
numerical studies and scaling arguments; in particular, D is dimension 
dependent (increasing with d) below six dimensions, but D = 4 for d~> 6. f3~ 

The following heuristic argument might then provide an intuitive pic- 
ture of our model's behavior. Consider the infinite-volume invasion trees 
T~(u) and T~(v) introduced in the last section. If each has a fractal dimen- 
sion less than d/2, the probability that they will "miss" each other is greater 
than zero; if it is greater than d/2, they will intersect with probability one. 
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This suggests that if the fractal dimension D; of To~(u) is equal to D, 
then the critical dimension of our model is eight. Below eight dimensions 
invasion regions should always intersect, and hence there would be only 
one pair of ground states in our spin-glass model; above that there should 
be an infinite number. 

To make this line of reasoning a bit more precise, let us define a pair 
connectedness function G(y - x) as the probability that the site y ~ To~(x). 
We can then define D; by the relation 1~2"3~ 

G ( y -  x) ~ 1 / l l y -  xll a-D' (6) 

as I l y - x l l  ~ oo. Note that summing Eq. (6) over all y in a box of side 
length L centered at x yields L ~ as the order of the (mean) number of sites 
in that box which belong to T~(x).  

Our main task is then to determine Di as a function of space dimen- 
sion d. First, however, we provide a precise statement of a condition for 
nonintersection of invasion trees, which also provides rigorous justification 
for part of the heuristic argument presented above. 

Theorem.  If Z_,.~z~ G(x)2 < oo, then (with probability one) there are 
infinitely many (random) sites x~, x2 .... such that To~(xi) n To~(xj) = ~ .  

Remark .  Although we state this theorem in the context of invasion 
percolation, the proof we will now present shows that it remains valid for 
a fairly general class of random growth processes in place of T,,(x). The 
ingredients of the proof are (statistical) translation and reflection 
invariance and the fact that the events {T, , (x )=A} and { T , ( y ) = B }  are 
independent as long as A and B are separated in Z d by some fixed distance. 
This fact is in turn a consequence of the "local dependence" of events like 
{ T,,(x)= A } on the underlying K,-y variables (and the mutual independence 
of those variables). 

Proof. Let A,, denote the event that there exist some n sites x~ .... , x,, 
with T~.(xi)c~ T ~ ( x j ) = ~  for 1 <~i<j<<.n. If we can show that for every 
e > 0 and every n, P(A,,)/> 1 - e ,  then P(A,,)= 1 for each n and the desired 
result follows by letting ii ~ oo. The desired lower bound on P(A,,) would 
itself be a consequence of showing that P ( T ~ ( x ) n  T ~ ( y ) = ~ ) ~  1 as 
IIx-Yll ~ or. To see this, pick deterministic y~ ..... y,, with IlYi-Yj[I large 
enough, for i :/:j, so that 

(") P ( T ~ ( y , ) c ~ T ~ ( y j ) v ~ ) < ~ e  2 

822/82/3--4-33 
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then 

P(A,)  >1 P( Too(Ya) c~ Too(yj) = ~Z~ for 1 ~< i < j ~< n) 

>11-  ~. P(Too(y , )c~Too(y j )v~)  
I <~ i<j<~n  (n) /(n) 

- . e  = l - e  ( 7 )  />1 2 2 

It remains to obtain a suitable lower bound for P(Too(x)c~ Too(y)= ~ )  
when IIx-Yll is large. 

Denote by p(Too(x),To~(y)) the minimum Euclidean distance between 
some site in Too(x) and some site in To~(y). Furthermore, let T'~(y) denote 
an invasion region constructed using a completely independent duplicate 
set of variables {Ki,.y} [so that To~(x) and T ' ( y )  are independent random 
trees]. An elementary but crucial observation is that 

P( Too(x) n Too(y) = ~ )  >>. P(p( Too(x), Too(),)) > 1) 

=P(p(Too(x), T'~(y)) > 1) (8) 

where the inequality is trivial and the equality follows from a fairly 
standard type of argument (see, e.g. ref. 2) given in the next paragraph, 
which, roughly speaking, leads to the conclusion that Too(x) and Too(y) are 
independent, conditional on p(Too(x), Too(y)) > 1. 

To explain more concretely the equality in Eq. (8), let us note that for 
any possible configuration A of T,,(x), the event that T , ( x ) =  A depends 
only on the Kxy'S with ( x y )  ~ ~(A), where g(A) denotes the set of nearest 
neighbor edges which touch either one or two vertices of A. If B is a 
possible configuration for T,,(y) with p(A, B ) >  1 [or  equivalently with 
r c~ g(B) = ~ ] ,  then the events { T,(x) = A} and { T,,(y) = B} are 
independent since they depend on disjoint sets of the independent Kxy'S. 
Hence 

P(p(T,,(x), T;,(y)) > 1) = 
A , B : p ( A , B ) >  I 

= E 
A , B : p ( A , B ) >  1 

= E 
A , B : p { A , B ) >  1 

= P(p(T,,(x), T;,(y)) > 1 ) 

Letting n ---, oo gives the desired equality. 

P(T,,(x) = A, T,,(y) = B) 

P(T,,(x) = A )( 1".(y) = B) 

P( T.(x) = A, T ' (  y ) =  B) 

(9) 
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Let [_ denote the event that zeToo(x) and p(z, T'(y))<~ I. Then 
p(Todx), T'o~(y))~< 1 if and only if/'z occurs for some z and hence 

e(p(Todx) ,T ' (y ) )> l , - - l - P (  _~ ~za/-') 

>1 1 -- 2 P(I:) 
2 E Z  d 

= 1 - ~ P(z~ To~(x)) P(p(z, Tody))-~ 1) 
z E Z  d 

>~1- ~, a(z-x) Y. O(z'-y) (lO) 
z ~ Z  d I Iz ' - -z l l  ~< 1 

By using the reflection invariance of G(x), the last expression can be 
rewritten as 

1 -  y'  ( ~ z  G ( x - y + w - z )  G(z)) (11) 
Ilwll ~< I z d 

To complete the proof, it clearly suffices to show that 

( G * G ) ( x )  = ~" G ( x - z )  G ( z ) ~ O  as I lxl l~<~ (12) 
z e Z  d 

But 

(G*G)(x)=~ [d(k)]2e-ik'Xdk (13) 
[ - n , ~ ]  a 

where 

(~(k) = (21r)-a/2 y" G(x) e ik':" (14) 
x E Z  d 

Furthermore, d(k) is real since G(x)= G( -x )  and so 

It ,~,~/Er Id(k)12dk= ~ Ia(x)12<oo (15) 
x ~ Z  d 

Thus [(~(k)]2~Ll([-Tr,  rr] d, dk) and so by Eq. (13) and the Riemann- 
Lebesgue lemma, (G �9 G)(x) --, 0 as Ilxll -~ ~ ,  as desired. | 

Using this result and Eq. (6), it follows that the condition Di<d/2 is 
sufficient for nonintersection of invasion regions in d dimensions, and 
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correspondingly, for our model to have an uncountable number of ground 
states. We now consider this question. 

Monte Carlo simulations of invasion percolation on square and simple 
cubic lattices t3'~ provide strong evidence that Di=D in dimensions two 
and three (D = 91/48 and D -- 2.53t3~ In higher dimensions, less is known. 
There does exist, however, an exact solution for invasion percolation on a 
Cayley treeJ 25~ 

One can deduce the fractal dimension Di of the invasion region using 
two different measures. One of these is to compute the radius of gyration 
(i.e., the root of the mean square cluster radius) R after the invasion pro- 
cess has completed n steps. For the Cayley tree, it was found using Monte 
Carlo simulations t25~ that, as n--, oo, R ~ 171/4, consistent with Di = 4. 

The second measure uses the exact solution mentioned above and is 
much closer to Eq. (6). The shape function S~,, which is the mean number 
of invaded sites on level m of the Cayley tree for an invasion of n steps, is 
computed. By analyzing Eq. (9) in ref. 25 (valid for the simplest Cayley 
tree, i.e., with coordination number 3) in the limits fl--, 1 and ~--, 1 (in that 
order), we find that S,~, ~ is proportional to m (with logarithmic corrections) 
as m --, ~ .  The total number of sites invaded up to level m thus scales 
as rn 2. The usual measure of distance on a Cayley tree places level m at dis- 
tance x / ~  from the origin, leading again to D~ = 4. 

We therefore conclude (nonrigorously) that Di = 4 is an upper bound 
for the fractal dimension of an invasion tree on a lattice in finite dimension. 
Given that we expect D~ = D in any dimension, and given the known values 
of D, we conclude that the critical dimension in our problem is eight. 

6. THE ROLE OF F R U S T R A T I O N  

We have so far argued that our model has a transition in ground-state 
multiplicity at eight dimensions. However, the nature of the "spin-glassi- 
ness" of our model, and in particular the role played by frustration, has not 
been clarified. In fact, suppose that one were to construct a model of a 
random ferromagnet using the Hamiltonian (1) and couplings (2) but with 
all e,:,, = + 1. For this system, the ground state in any finite volume with 
specified boundary conditions can be found using the same greedy algo- 
rithm described in Section 3. It is clear that once again many (infinite- 
volume) ground states (in d > 8) can be generated with appropriate choices 
of fixed boundary conditions. (We recall that this is also the case for 
uniform ferromagnets in any dimension or ordinary random ferro- 
magnets ~'71 in d >  5). 

So how is the ground-state structure of the above random ferromagnet 
different from that of our spin glass? One difference can be found through 



Highly Disordered Spin-Glass Model 1127 

analyzing the behavior of each in the presence of certain spin-symmetric 
coupling-independent boundary conditions, such as free or periodic. 

In an earlier paper t2~ we argued that multiplicity of ground states in 
the EA Ising spin glass should be associated with nonexistence of a single 
limiting Gibbs distribution, in the thermodynamic limit, for any coupling- 
independent boundary conditions. We find that the same association holds 
here. While the conclusion is fairly clear for any sequence of f ixed 
boundary conditions, in which each boundary spin is assigned a definite 
value, the mechanism for spin-symmetric (e.g., free or periodic) boundary 
conditions is more subtle. Its investigation provides deeper insight into the 
nature of our spin-glass model, and in particular the role played by 
frustration. 

We first discuss fixed boundary conditions. Let us now denote the 
always satisfied bonds in At., as defined in Section 3, as SI'" bonds, where 
the w superscript (for "wired") is to remind us of the convection that all 
boundary points are treated as automatically connected. (This is analogous 
to wired boundary conditions in the FortuinTKasteleyn random cluster 
representation of Ising and Ports models. Ij~) Let us denote by F~' the union 
of all the S1TM bonds, or equivalently the union over u ~ A t  of the invasion 
trees TIL~(u)(stopped when they touch c3AL). F~' depends on the Kxy's, 
while the overall "sign" of any individual tree in F~ (i.e., the sign of a single 
spin in that tree) is determined finally by the boundary spin (at the par- 
ticular site where the tree touches OAL) and the coupling sign e,.y of the SI " 
bond touching that boundary site. For d > 8, as L increases with a given 
sequence #a-~ of fixed, coupling-independent boundary conditions, the sign 
of each tree will randomly flip, and no single limiting ground state is 
obtained in the thermodynamic limit. 

Indeed the size dependence is such that all of the uncountably many 
ground states will appear as limits along coupling-dependent subsequences 
of volumes. To see that, we first condition on all the K,.y'S and let T~, 7'_, .... 
be a list (in some order) of all the distinct trees from F~.. Let r/~ L) 
denote the sign of (some a.,_, in) Ti, as determined by the ex,'s and the 
boundary condition #~L~. From the previous discussion it should be clear 
that (i) for each L, eL}= {~IL~:xi~A~_} consists of independent random 
variables, equally likely to be + 1 or - 1 ,  and (ii) for varying L, the ry'~'s 
are independer]t. It follows (for almost every coupling realization) that for 
every m and for every assignment 71 ["'] of signs FI~ "'] = ___ 1 for i~ { 1 ..... m}, 
the collection {L:q l  L~ =rT~ "~ for i =  1 ..... m} is an infinite subsequence of 
L's. By a standard subsequence diagonalization argument, it follows that 
for every one of the uncountably many assignments r7 of signs rT~ = + 1 for 
all i~>l, there exists a subsequence {Lj(rT):j~> 1} so that for all i, 
r/ILJ~'il)-'* rTi as j ~ ~ .  
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Consider now the case of the finite cube A t- c Z a, with d > 8, and with, 
say, free boundary conditions. (We briefly discuss periodic and antiperiodic 
b.c.'s later.) At first it might seem that the connection between ground 
states and invasion percolation is no longer valid, because for every finite 
volume there is only a single cluster of always satisfied couplings. This is 
because, unlike when the boundary spins are fixed, the procedure of satis- 
fying couplings of successively smaller magnitude will be continued until all 
sites are connected. To explain this more fully, we define a bond (:r with 
both sites x and y in AL to be an SI :  bond exactly as in the definition of 
an S1 bond in Section 3 except that a path is said to connect the points 
x and y only if the path stays entirely within At_, never touching the 
boundary. In this case, it is not hard to see that the set F~ of all S I :  bonds 
forms a single tree spanning all of At_. 

To clarify the relation between free-b.c, ground states and the invasion 
forest F~ ,  we begin with a simple but important observation, that every 
SI'" bond with both endpoints in At_ (i.e., leaving out any SI"' bond 
touching OAt_) is also an S l : b o n d .  Let us denote by EYz the set of all SI:  
bonds which are not also SI"  bonds. These are the bonds which connect 
together the distinct trees of F~' to create the single spanning tree F~. Note 
that every such bond ( x y )  must have its two endpoints in distinct trees 
of Ft~'. We now make a crucial claim: as L --, oo, the edges of E~ will move 
out to infinity. More precisely stated, the intersection of E f with any fixed 
set of bonds (say, all bonds in At_ 0 with Lo fixed) will, for all large L, 
be the empty set. To see this, first observe that any such edge ( x y )  not 
moving out to infinity would have two properties: (a) There would be no 
path in Z a between x and y with all K values along the path strictly below 
Kxy; (b) T~(x)c~ To~(y)=/Zr It was proved by Alexander (3) that such 
edges do not exist in any dimension. 

We will next argue that the relative sign between trees flips randomly, 
and so for our spin-glass model there is no single limiting pair of ground 
states for a sequence of volumes (chosen independently of the couplings) 
with free boundary conditions. In fact, we will see that in our model, all of 
the uncountably many ground-state pairs arise via coupling-dependent sub- 
sequences. This chaotic size dependence, i.e., absence of a limiting ground 
state, for free (or periodic) boundary conditions is similar to that which 
would be found in the EA model were it to possess many ground-state 
pairs. ~2~) We argued in ref. 21 that this is, in fact, the signature of multiple 
ground-state pairs in spin glasses, and sets them apart from other systems 
which may also possess multiple ground-state pairs, such as random ferro- 
magnets. 

The argument for random flipping of relative signs between trees in 
the free-b.c, case is like the one used above for flipping of absolute signs of 



Highly Disordered Spin-Glass Model 1129 

trees in the fixed-b.c, case, with a few modifications. Again, we condition on 
all K,.v's and let T], T2 .... be the distinct trees of F~.  Now let r/~. L) be the 
relative sign a:,./r.,.j in the free-b.c, ground state. This is determined (finally) 
by the signs exy of the bonds (xy> in E~. Since these bonds move off to 
infinity, we can pick a (sufficiently rapidly growing) subsequence Lk ~ 
so that the sets E~k are disjoint from each other for different k's. It follows 
that the relative signs ,,(z.,) between the first and ith trees will be inde- "l l i  

pendent as both i and k vary. Consequently, the same diagonalization 
procedure as in the fixed-b.c, case can be applied to obtain the requisite 
further subsequences of Lk.  

Finally, we note that for periodic (or antiperiodic) b.c.'s, S1 p bonds 
are defined by regarding every boundary point as automatically connected 
to its periodic image point, but with no other automatic connections. Thus, 
as in the free-b.c, case, every S1 "' bond is also an S1 p bond, while the other 
S1 p bonds must move to infinity as L ~ ~ .  This leads to the same conclu- 
sions as in the free-b.c, case. 

Let  us now contrast this picture with that of the random ferromagnetic 
version of our model. There, free or periodic boundary conditions would 
yield a single pair of ground states as L ---, ~ - -namely ,  all spins up and all 
spins down. This will be the case in any dimension. As with the usual 
models of ferromagnets and spin glasses, either of which might have many 
ground states, the difference from spin glasses is revealed most sharply 
through the use of certain coupling-independent, spin-symmetric boundary 
conditions, in particular, free or periodic. 

We note, however (as pointed out to us by A. van Enter) that many 
coupling-independent, spin-symmetric boundary conditions do not dis- 
tinguish in this way between the ferromagnetic and spin-glass versions of 
our model. For example, a mixture (with equal weights) of random bound- 
ary conditions and their global flip will have chaotic size dependence even 
for the ferromagnetic version. An even more interesting likely example of 
this phenomenon, suggested by van Enter, is the case of antiperiodic 
boundary conditions. 

7. C O N C L U S I O N S  

In this paper we have expanded our original discussion in I, supplied 
additional proofs and arguments, and looked at our model in greater 
depth. In this section we briefly discuss some consequences of our studies, 
particularly what (if any) conclusions can be drawn about more realistic 
spin-glass models, and how our approach can be used to study other 
topics, particularly certain dynamical problems. 
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We first recap our main conclusions, based on both rigorous and non- 
rigorous arguments: 

�9 In invasion percolation on Z a, the invasion forest Fo~ has only one 
tree in dimensions less than eight, and infinitely many above eight. 

�9 In the spin-glass model introduced in I and discussed here, there 
exists only a single pair of ground states below eight dimensions, and 
infinitely many above eight. 

�9 Elucidation of the ground-state structure exactly at  eight dimensions 
cannot be addressed by the techniques provided in this paper, and requires 
further study. 

�9 The random ferromagnetic version of our model [all e.,.y = 1 in 
Eq. (2)] also has a transition in ground-state multiplicity at eight dimen- 
sions. However, exactly as in the Edwards-Anderson model, the special 
feature of spin-glass ground-state multiplicity manifests itself in chaotic size 
dependence for free or periodic boundary conditions. 

�9 The special properties of this model render it unsuitable for drawing 
firm conclusions about more realistic spin-glass models. However, our 
results lend some support to the viewpoint that a transition in ground-state 
multiplicity can occur at some finite dimension greater than one. 

�9 Our study can resolve one perennially cloudy issue in the literature; 
namely, that of whether the joint presence of quenched disorder and 
frustration has any universal implications for ground-state structure or 
multiplicity. The results presented here make it clear that no such a pr ior i  

implications can be drawn. 

We close with a brief discussion of applications of our results to other 
problems. The form of the exponential expression in Eq. (2) suggests that 
our techniques might apply in some way to the problem of a random walk 
in a strongly inhomogeneous environment. If Kxy is thought of as an energy 
barrier between sites x and y, and 2 now represents inverse temperature, 
then exp(-2Kxy) may be interpreted as an Arrhenius factor proportional 
to the rate  of making a transition from x to y at fixed temperature 2-~. 
Random Kxy's, like those used throughout this paper, correspond to a 
rugged energy landscape. We can then prove that, in the limit as tem- 
perature gets small, the order in which sites are visited for the first time 
corresponds exactly to the invasion order in invasion percolation. 123) We 
further develop conclusions drawn from the theorems proved in ref. 23 and 
study the nature of broken ergodicity on a system whose state space resem- 
bles a rugged landscape, i.e., has many metastable states with random fixed 
barriers separating them. t24) This leads to a surprising degree of emergent 
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s t r u c t u r e  f r o m  w h a t  a p p e a r s  in i t ia l ly  as a r a t h e r  fea ture less  l andscape .  T h e  

mul t ip l i c i ty  o f  t rees  in  the  i n v a s i o n  fores t  for  h i g h  d i m e n s i o n s  p lays  a n  

i m p o r t a n t  ro le  in  t h a t  work .  W e  are  p r e s e n t l y  s t u d y i n g  h o w  o u r  ana lys i s  

here  a n d  in refs. 23 a n d  24 c a n  be  app l i ed  in o t h e r  con tex t s .  
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